Java Handouts
 R.Ramakrishna
Dept. of CSE(KIST)
Java Virtual Machine

 Class file

 SHAPE * MERGEFORMAT
[image: image1]

Execution
 engine

<Components in JVM architecture>
*The above figure shows the architecture of java Virtual Machine.
Java Virtual Machine (JVM) is the heart of entire Java program execution process. It is responsible for taking the .class file and converting each byte code instruction into the machine language instruction that can be executed by the microprocessor.
First of all, the .java program is converted into a .class file consisting of bytecode instruction by the java compiler. Remember this compiler is outside the JVM. Now this .class file is given to the JVM. In JVM, there is a module (or program) called class loader sub system, which performs the following functions:

· First, it loads the .class file into memory.
· Then it verifies whether all byte code instructions are proper or not. If it finds any instruction suspicious, the execution is rejected immediately.

· If the byte instructions are proper, then it allocates necessary memory to execute the program.

This memory is divided into 5 parts called run time data areas, which contain the data and results while running the program. These areas are as follows:
· Method area: Method area is the memory block, which stores the class code, code of the variables and code of the methods in the java program.(Method means functions written in a class)

· Heap: This is the area where objects are created. Whenever JVM loads a class, a method and a heap area are immediately created in it.
· Java Stacks: Method code is stored on Method area. But while running a method, it needs some more memory to store the data and results. This memory is allotted on Java stacks. So Java stacks are memory areas where Java methods are executed. While executing methods, a separate frame will be created in java stack, where the method is executed. JVM uses a separate thread to execute each method.
· PC (Program Counter) registers: These are the registers (memory areas), which contain memory address of the instructions of the methods. If there are 3 methods, 3 PC registers will be used to track the instructions of the methods.

· Native methods stacks: Java methods are executed on Java stacks. Similarly, native methods (e.g. - C/C++ functions) are executed on Native method stacks. To execute the native methods, generally native method libraries (e.g. - C/C++ header files) are required. These header files are located and connected to JVM by a program, called Native method interface.
Execution engine contains interpreter and JIT compiler which are responsible for converting the bytecode instructions into machine code so that the processor will execute them. Most of the JVM implementations use both the interpreter and JIT compiler simultaneously to convert the bytecode. This technique is also called adaptive optimizer.
When the .class code is loaded into memory, JVM first of all identifies which code is to be left to interpreter and which one to JIT compiler so that the performance is better. The blocks of code allocated for JIT compiler are also called hotspots. Thus both the interpreter and JIT compiler will work simultaneously to translate the byte code into machine code.
Example-
System.out.println(“hello”); Execution done by Interpreter
System.out.println(“hello”);

for(int i=1;i<=10;i++)
 Execution done by JIT compiler
System.out.println(“hello”);

Difference between C++ and Java
	C++
	Java

	C++ is not a purely object-oriented programming language, since it is possible to write C++ programs without using a class or an object.
	Java is purely an object-oriented programming language, since it is not possible to write a java program without using atleast one class.

	Pointers are available in C++
	We can’t create and use pointers in Java.

	Allocating memory and deallocating memory is the responsibility of the programmer.

	Allocation and deallocation of memory will be taken care of by JVM.

	C++ has goto statement.
	Java does not have goto statement.

	Automatic casting is available in C++.
	In some cases, implicit casting is available. But it is advisable that the programmer should use casting wherever required.

	Multiple Inheritance feature is available in C++.
	No Multiple inheritance in java, but there are means to achieve it.

	Operator overloading is available in C++.
	It is not available in java.

	#define, typedef and header files are available in C++.
	#define, typedef and header are not available in Java, but there are means to achieve them.

	There are 3 access specifiers in c++: private, public and protected.
	Java supports 4 access specifiers: private, public, protected, and default.

	There are constructors and destructors in C++.
	Only constructors are there in Java. No destructors are available in this language.

Class loader sub system

Method area

Heap

Java stacks

PC registers

Native method stacks

Runtime data areas

Interpreter

JIT

Compiler

Operating System

Native method interface

Native method libraries

PAGE
3

